How do I find the derivative of g(x)=ln(ln(ln(f(x))))?
2 Answers
Since
Explanation:
The chain rule, as it applies to the function
d/dxln(color(red)u)=1/color(red)u*(color(blue)dcolor(red)u)/color(blue)dx
We must start with the outermost
g'(x)=d/dxln(color(red)ln(ln(f(x))))=1/color(red)ln(ln(f(x)))*color(blue)(d/dx)color(red)(ln(ln(f(x)))
Reapplying the rule to the new derivative, we see that
d/dxln(color(red)ln(f(x)))=1/color(red)ln(f(x))*color(blue)(d/dx)color(red)(ln(f(x))
Thus,
g'(x)=1/ln(ln(f(x)))*1/ln(f(x))*d/dxln(f(x))
For the final time, find a last natural logarithm derivative:
d/dxln(color(red)f(x))=1/color(red)f(x)*color(blue)(d/dx)color(red)(f(x)
=1/f(x)*f'(x)
All together, we see that
g'(x)=1/ln(ln(f(x)))*1/ln(f(x))*1/f(x)*f'(x)
=(f'(x))/(f(x)*ln(f(x))*ln(ln(f(x))))