How do I find the derivative of g(x)=ln(ln(ln(f(x))))?

2 Answers
Apr 4, 2016

Since d/dxlnx=1/x, it implies that, together with use of the power rule, we get

d/dxln(ln(lnf(x)))=1/(ln(lnf(x))) * 1/(lnf(x)) * 1/f(x) * (df)/dx

Apr 5, 2016

g'(x)=(f'(x))/(f(x)*ln(f(x))*ln(ln(f(x))))

Explanation:

The chain rule, as it applies to the function ln(x), is:

d/dxln(color(red)u)=1/color(red)u*(color(blue)dcolor(red)u)/color(blue)dx

We must start with the outermost ln(u) function:

g'(x)=d/dxln(color(red)ln(ln(f(x))))=1/color(red)ln(ln(f(x)))*color(blue)(d/dx)color(red)(ln(ln(f(x)))

Reapplying the rule to the new derivative, we see that

d/dxln(color(red)ln(f(x)))=1/color(red)ln(f(x))*color(blue)(d/dx)color(red)(ln(f(x))

Thus,

g'(x)=1/ln(ln(f(x)))*1/ln(f(x))*d/dxln(f(x))

For the final time, find a last natural logarithm derivative:

d/dxln(color(red)f(x))=1/color(red)f(x)*color(blue)(d/dx)color(red)(f(x)

=1/f(x)*f'(x)

All together, we see that

g'(x)=1/ln(ln(f(x)))*1/ln(f(x))*1/f(x)*f'(x)

=(f'(x))/(f(x)*ln(f(x))*ln(ln(f(x))))