How do I find the derivative of k(a)=sin^5acos^4a?

How do I even find f'x for sin^5a and cos^4a? I would use the product rule, but I'm lost on just what the derivatives of the separate parts are.

1 Answer
Apr 30, 2018

#(dk)/(da)=-4cos^3a*sin^6a+5sin^4a*cos^5a#

Explanation:

  • Let #g(a)=sin^5a#

#g'(a)=5sin^4a*color(blue)(cosa##color(green)(rarr"Chain Rule")#

  • Let #h(a)=cos^4a#

#h'(a)=4cos^3a*(color(blue)(-sina))##color(green)(rarr"Chain Rule")#

#k=h(a)*g(a)#

#(dk)/(da)=h'(a)*g(a)+g'(a)*h(a)#

Substitute

#(dk)/(da)=(-4cos^3a*sina)*(sin^5a)+(5sin^4a*cosa)*(cos^4a)#

#(dk)/(da)=-4cos^3a*sin^6a+5sin^4a*cos^5a#