How do I find the derivative of y = arccos((x-3)^2)?

1 Answer

dy/dx=d/dx(cos^-1 (x-3)^2)=(-2x+6)/sqrt(1-(x-3)^4)

Explanation:

The formula to find the derivative of cos^-1 u is

d/dx(cos^-1 u)=-1/sqrt(1-u^2)*d/dx(u)

So from the given y=cos^-1 (x-3)^2
Let u=(x-3)^2

from the formula

dy/dx=d/dx(cos^-1 u)=-1/sqrt(1-u^2)*d/dx(u)

dy/dx=d/dx(cos^-1 (x-3)^2)=-1/sqrt(1-((x-3)^2)^2)*d/dx((x-3)^2)

dy/dx=d/dx(cos^-1 (x-3)^2)=

-1/sqrt(1-(x-3)^4)*2(x-3)*d/dx(x-3)

dy/dx=d/dx(cos^-1 (x-3)^2)=(-2(x-3))/sqrt(1-(x-3)^4)*(1)

dy/dx=d/dx(cos^-1 (x-3)^2)=(-2x+6)/sqrt(1-(x-3)^4)

have a nice day!