How do I find the derivative of y= ln(4 x)/x^7?

1 Answer
Jan 10, 2016

dy/dx=(1-7ln(4x))/x^8

Explanation:

The quotient rule states that

d/dx [(f(x))/(g(x))]=(g(x)*f'(x)-f(x)*g'(x))/([g(x)]^2).

Application of this rule to the given function yields :

dy/dx=(x^7(4/(4x))-7x^6*ln(4x))/(x^7)^2

=(x^6(1-7ln(4x)))/x^14

=(1-7ln(4x))/x^8.