How do I find the derivative of y=ln(e^-x + xe^-x) y=ln(ex+xex)?

1 Answer
Mar 31, 2016

Use some logarithm properties and the fact that d/dx(lnx)=1/xddx(lnx)=1x to get dy/dx=-x/(1+x)dydx=x1+x.

Explanation:

Begin by factoring out an e^-xex within the parenthesis:
y=ln(e^-x(1+x))y=ln(ex(1+x))

Now apply the property ln(ab)=ln(a)+ln(b)ln(ab)=ln(a)+ln(b) to get:
y=ln(e^-x)+ln(1+x)y=ln(ex)+ln(1+x)

Apply another property specific to the natural logarithm, ln(e^a)=aln(ea)=a:
y=-x+ln(1+x)y=x+ln(1+x)

We can now take the derivative with ease.

Using the sum rule, d/dx(-x+ln(1+x))=d/dx(-x)+d/dx(ln(1+x))ddx(x+ln(1+x))=ddx(x)+ddx(ln(1+x)). And using the fact that d/dx(-x)=-1ddx(x)=1 and d/dx(ln(1+x))=1/(1+x)ddx(ln(1+x))=11+x,
(dy)/dx=-1+1/(1+x)dydx=1+11+x

Finally, add the fractions to get the final result:
(dy)/dx=-(1+x)/(1+x)+1/(1+x)=-x/(1+x)dydx=1+x1+x+11+x=x1+x