How do I find the derivative of y = (sin(e^x))^ln(x^2)y=(sin(ex))ln(x2)?

1 Answer

color(blue)(y'=(sin e^x)^(ln x^2)[e^x*ln x^2*cot e^x+2/x*ln sin e^x])

Explanation:

The given equation is

y=(sin e^x)^(ln x^2)

Take the natural logarithm of both sides then differentiate with respect to x

y=(sin e^x)^(ln x^2)

ln y=ln (sin e^x)^(ln x^2)

ln y=(ln x^2)*ln (sin e^x)

We now have a derivative of a product at the right sides of the equation.

Obtain the derivative of both sides

ln y=(ln x^2)*ln (sin e^x)

d/dx(ln y)=d/dx[(ln x^2)*ln (sin e^x)]

1/y*y'=(ln x^2)*d/dx(ln sin e^x)+(ln sin e^x)*d/dx(ln x^2)

1/y*y'=(ln x^2)*1/( sin e^x)*d/dx(sin e^x)+(ln sin e^x)*1/x^2*d/dx(x^2)

1/y*y'=(ln x^2)*1/( sin e^x)(cos e^x)d/dx(e^x)+(ln sin e^x)*1/x^2*2x

1/y*y'=(ln x^2)*1/( sin e^x)(cos e^x)(e^x)+2/x*ln sin e^x

1/y*y'=(ln x^2)*(cot e^x)(e^x)+2/x*ln sin e^x

Multiply both sides by y then simplify

y*1/y*y'=y*(ln x^2)*(cot e^x)(e^x)+2/x*ln sin e^x

y'=y*(ln x^2)*(cot e^x)(e^x)+2/x*ln sin e^x

y'=(sin e^x)^(ln x^2)[e^x*ln x^2*cot e^x+2/x*ln sin e^x]

God bless....I hope the explanation is useful.