The given equation is
y=(sin e^x)^(ln x^2)
Take the natural logarithm of both sides then differentiate with respect to x
y=(sin e^x)^(ln x^2)
ln y=ln (sin e^x)^(ln x^2)
ln y=(ln x^2)*ln (sin e^x)
We now have a derivative of a product at the right sides of the equation.
Obtain the derivative of both sides
ln y=(ln x^2)*ln (sin e^x)
d/dx(ln y)=d/dx[(ln x^2)*ln (sin e^x)]
1/y*y'=(ln x^2)*d/dx(ln sin e^x)+(ln sin e^x)*d/dx(ln x^2)
1/y*y'=(ln x^2)*1/( sin e^x)*d/dx(sin e^x)+(ln sin e^x)*1/x^2*d/dx(x^2)
1/y*y'=(ln x^2)*1/( sin e^x)(cos e^x)d/dx(e^x)+(ln sin e^x)*1/x^2*2x
1/y*y'=(ln x^2)*1/( sin e^x)(cos e^x)(e^x)+2/x*ln sin e^x
1/y*y'=(ln x^2)*(cot e^x)(e^x)+2/x*ln sin e^x
Multiply both sides by y then simplify
y*1/y*y'=y*(ln x^2)*(cot e^x)(e^x)+2/x*ln sin e^x
y'=y*(ln x^2)*(cot e^x)(e^x)+2/x*ln sin e^x
y'=(sin e^x)^(ln x^2)[e^x*ln x^2*cot e^x+2/x*ln sin e^x]
God bless....I hope the explanation is useful.