How do I find the derivative of y=xsin^(-1)x + sqrt(1-x^2)?

1 Answer
Aug 22, 2015

y^' = arcsinx

Explanation:

You can differentiate this function by using the product rule and the chain rule, provided that you know that

d/dx(arcsinx) = 1/(sqrt(1-x^2)

So, your function can be written like this

y = x * arcsinx + sqrt(1-x^2)

You will use the product rule to differentiate x * arcsinx, and the chain rule to differentiate sqrt(u), with u = 1-x^2. This will get you

d/dx(x * arcsinx) = [d/dx(x)] * arcsinx + x * d/dx(arcsinx)

d/dx(x * arcsinx) = 1 * arcsinx + x * 1/(sqrt(1-x^2)

and

d/dx(sqrt(u)) = d/(du)sqrt(u) * d/dx(u)

d/dx(sqrt(u)) = 1/2 * 1/sqrt(u) * d/dx(1-x^2)

d/dx(sqrt(1-x^2)) = 1/color(red)(cancel(color(black)(2))) * 1/sqrt(1-x^2) * (-color(red)(cancel(color(black)(2)))x)

d/dx(sqrt(1-x^2)) = -x/sqrt(1-x^2)

The derivative of y will thus be

d/dx(y) = d/dx(x * arcsinx) + d/dx(sqrt(1-x^2))

y^' = arcsinx + x/sqrt(1-x^2) + (-x/sqrt(1-x^2))

y^' = arcsinx + color(red)(cancel(color(black)(x/sqrt(1-x^2)))) -color(red)(cancel(color(black)(x/sqrt(1-x^2))))

y^' = color(green)(arcsinx)