How do I find the fifth root of a complex number?

1 Answer
Nov 1, 2015

Convert to polar form first, then...

Explanation:

A Complex number in the form r(cos theta + i sin theta)r(cosθ+isinθ) has 55th roots:

root(5)(r)(cos (theta/5) + i sin (theta/5))5r(cos(θ5)+isin(θ5))

root(5)(r)(cos ((theta + 2pi)/5) + i sin ((theta+2pi)/5))5r(cos(θ+2π5)+isin(θ+2π5))

root(5)(r)(cos ((theta + 4pi)/5) + i sin ((theta+4pi)/5))5r(cos(θ+4π5)+isin(θ+4π5))

root(5)(r)(cos ((theta + 6pi)/5) + i sin ((theta+6pi)/5))5r(cos(θ+6π5)+isin(θ+6π5))

root(5)(r)(cos ((theta + 8pi)/5) + i sin ((theta+8pi)/5))5r(cos(θ+8π5)+isin(θ+8π5))

Conventionally your original thetaθ is in the range (-pi, pi](π,π] or the range [0, 2pi)[0,2π) according to your definition of Arg(z)Arg(z) and the first of these five roots is the Principal Complex fifth root.