How do I find the inverse of f(x)=(x+3)/(x-2)?

1 Answer
Oct 23, 2016

Please see the explanation. f^-1(x) = 5/(x - 1) + 2

Explanation:

let x = f^-1(x) and then substitute everywhere there is an x:

f(f^-1(x)) = (f^-1(x) + 3)/(f^-1(x) - 2)

Let left side becomes x by definition:

x = (f^-1(x) + 3)/(f^-1(x) - 2)

Add zero to the numerator in the form -2 + 2:

x = (f^-1(x) -2 + 2 + 3)/(f^-1(x) - 2)

Regroup:

x = ((f^-1(x) -2) + (2 + 3))/(f^-1(x) - 2)

Break into two fractions:

x = (f^-1(x) -2)/(f^-1(x) - 2) + (2 + 3)/(f^-1(x) - 2)

Substitute 1 for (f^-1(x) -2)/(f^-1(x) - 2) and 5 for 3 + 2

x = 1 + 5/(f^-1(x) - 2)

Subtract 1 from both sides:

x - 1 = 5/(f^-1(x) - 2)

Multiply both sides by (f^-1(x) - 2)/(x - 1)

f^-1(x) - 2 = 5/(x - 1)

Add 2 to both sides:

f^-1(x) = 5/(x - 1) + 2

To prove that it is an inverse, one must show that f(f^-1(x)) = x and f^-1(f(x)) = x.

f(f^-1(x)) = ((5/(x - 1) + 2) + 3)/((5/(x - 1) + 2) - 2)

f(f^-1(x)) = (5/(x - 1) + 5)/(5/(x - 1)

f(f^-1(x)) = ((5/(x - 1) + 5)/(5/(x - 1)))((x - 1)/(x - 1))

f(f^-1(x)) = (5+ (x - 1)5)/5

f(f^-1(x)) = (5+ 5x - 5)/(5

f(f^-1(x)) = (5x)/5

f(f^-1(x)) = x

Half of the proof is done.

Now for f^-1(f(x)):

f^-1(f(x)) = 5/((x + 3)/(x - 2) - 1) + 2

f^-1(f(x)) = 5/((x + 3)/(x - 2) - 1)(x - 2)/(x - 2) + 2

f^-1(f(x)) = (5(x - 2))/(x + 3 - (x - 2)) + 2

f^-1(f(x)) = (5(x - 2))/5 + 2

f^-1(f(x)) = x - 2 + 2

f^-1(f(x)) = x

Q.E.D.