If we make three sums:
#4+8+12+... = sum_(k=1)^n 4k#
#5+9+13+... = sum_(k=1)^n (4k+1) = sum_(k=1)^n 4k + sum_(k=1)^n 1 = sum_(k=1)^n 4k + n#
#6+10+14+... = sum_(k=1)^n (4k+2) = sum_(k=1)^n 4k + sum_(k=1)^n 2 = sum_(k=1)^n 4k + 2n#
Then :
#sum = sum_(k=1)^n 4k + sum_(k=1)^n 4k + n + sum_(k=1)^n 4k + 2n = 3sum_(k=1)^n 4k + 3n#
#sum = 12sum_(k=1)^n k + 3n = 12 (n(n+1))/2 +3n = 6n(n+1)+3n#
#sum = 3n(2(n+1)+1) = 3n(2n+3)#
Note: sum of first #n# integers is #(n(n+1))/2#.
We have to find #n# and it's the number of members in the first sum, so:
#n=168/4 = 42#
Finally:
#sum = 3*42*(2*42+3) = 126*87 = 10962#