How do I prove and find the domain of the following trig identity?

#(cos theta-sin theta)/(cos theta +sin theta)= (cot theta-1)/(cot theta + 1)#

1 Answer
Nov 22, 2016

see below

Explanation:

#(cos theta - sin theta)/(cos theta+sin theta)=(cot theta-1)/(cot theta+1)#

Right Side : #=(cot theta-1)/(cot theta+1)#

#=(cos theta/sin theta-1)/(cos theta/sin theta+1)#

#=((cos theta-sin theta)/sin theta)/((cos theta+sin theta)/sin theta#

#=(cos theta-sin theta)/sin theta * sin theta/(cos theta+sin theta)#

#=(cos theta-sin theta)/cancel sin theta * cancel sin theta/(cos theta+sin theta)#

#=(cos theta-sin theta)/(cos theta+sin theta)#

#:.=# Left Side

Domain :
The denominator cannot be zero. So take the denominator set it equal to zero and then solve.

#cos theta+sin theta=0#

Use linear combination to solve the equation

#A=1, B=1, C= sqrt 2#. Note that this is in quadrant one since both cosine and sine are positive

#cos D=A/C = 1/sqrt2#

#D=cos^-1(1/sqrt2)=45^@#

#sqrt2cos(theta-45^@)=0#--> Put it in the form # C cos (theta-D)=0#

#cos(theta-45^@)=0#

#theta-45^@=cos^-1 0#

#theta-45^@=+-90^@ +360^@ n#

#theta=45^@+-90^@ +360^@ n#

#theta=135^@ +360^@ n or theta=-45^@ + 360^@ n#

where #n=0,+-1,+-2,+-3,...#

Therefore,

#D:{theta inR,theta !=135^@ +360^@ n,theta!=-45^@ + 360^@ n, n=0,+-1,+-2,+-3,...}#