How do I simplify #(2sqrt(x)*sqrt(x^3))/sqrt(64x^15)#?

1 Answer
Jan 29, 2015

#(2sqrt(x)*sqrt(x^3))/sqrt(64x^15)#
1. Note: #sqrt(x)*sqrt(x^3)# = #x^2#

--> #(2sqrt(x)*sqrt(x^3))/sqrt(64x^15)# = #(2x^2)/sqrt(64x^15)#

  1. Note: #sqrt(64x^15)# = #8x^7sqrt(x)#

--> #(2x^2)/sqrt(64x^15)# = #(2x^2) / (8x^7sqrt(x))#

  1. Now rationalize the denominator

--> #(2x^2) / (8x^7sqrt(x)) * sqrt(x)/sqrt(x)# = #(2x^2sqrt(x)) / (8x^7*x) # = #(2x^2sqrt(x)) / (8x^8) # = #(sqrt(x)) / (4x^6) #