How do I simplify (2sqrt(x)*sqrt(x^3))/sqrt(64x^15)2xx364x15?

1 Answer
Jan 29, 2015

(2sqrt(x)*sqrt(x^3))/sqrt(64x^15)2xx364x15
1. Note: sqrt(x)*sqrt(x^3)xx3 = x^2x2

--> (2sqrt(x)*sqrt(x^3))/sqrt(64x^15)2xx364x15 = (2x^2)/sqrt(64x^15)2x264x15

  1. Note: sqrt(64x^15)64x15 = 8x^7sqrt(x)8x7x

--> (2x^2)/sqrt(64x^15)2x264x15 = (2x^2) / (8x^7sqrt(x))2x28x7x

  1. Now rationalize the denominator

--> (2x^2) / (8x^7sqrt(x)) * sqrt(x)/sqrt(x)2x28x7xxx = (2x^2sqrt(x)) / (8x^7*x) 2x2x8x7x = (2x^2sqrt(x)) / (8x^8) 2x2x8x8 = (sqrt(x)) / (4x^6) x4x6