How do I solve #cot^2 theta +sqrt3 cot theta = 0#?

1 Answer
Jun 23, 2018

#theta=pmpi/2+2kpi#,#theta_1=-pi/6+2kpi,theta_2=5pi/6+2kpi#

Explanation:

Rewriting your equation in the form
#cot(theta)(cot(theta)+sqrt(3))=0#
so we get two cases:

#cot(theta)=0#
since

#cot(x)=cos(x)/sin(x)=0#if #cos(x)=0#

we get

#theta=pmpi/2+2kpi#
the other case:
#cot(theta)=-sqrt(3)#
#theta_1=-pi/6+2kpi#
#theta_2=(5pi)/6+2kpi#