How do I solve #sec(3x)-sqrt2 = 0# algebraically?

1 Answer
Apr 28, 2018

#x= pi/12+2/3pin#
#x= (7pi)/2+2/3pin#
n is an element of all integers

Explanation:

Let #u# be #3x#:
#sec(u)-sqrt2=0#

#secu= sqrt2#

Apply reciprocal identity:
#1/cosu= sqrt2#

#cosu= 1/sqrt2= sqrt2/2#

#u= pi/4 +2pin#
#u= (7pi)/4+2pin#

Now replace #u# with #3x# and solve for x:

#3x=pi/4 +2pin#
#3x=(7pi)/4+2pin#

#x= pi/12+2/3pin#
#x= (7pi)/2+2/3pin#

Here's a graph:
graph{sec(3x)-sqrt2 [-10, 10, -5, 5]}