How do I solve sec(3x)2=0 algebraically?

1 Answer
Apr 28, 2018

x=π12+23πn
x=7π2+23πn
n is an element of all integers

Explanation:

Let u be 3x:
sec(u)2=0

secu=2

Apply reciprocal identity:
1cosu=2

cosu=12=22

u=π4+2πn
u=7π4+2πn

Now replace u with 3x and solve for x:

3x=π4+2πn
3x=7π4+2πn

x=π12+23πn
x=7π2+23πn

Here's a graph:
graph{sec(3x)-sqrt2 [-10, 10, -5, 5]}