How do solve int lnx/x^3 dx ?

1 Answer
Dec 24, 2016

The answer is =-(2lnx+1)/(4x^2)+C

Explanation:

We need

intx^ndx=x^(n+1)/(n+1)+C(n!=-1)

(lnx)'=1/x

We perform an integration by parts

intuv'dx=uv-intu'vdx

Here,

u=lnx, =>, u'=1/x

v'=1/x^3, =>, v=-1/(2x^2)

Therefore,

int(lnxdx)/x^3=-lnx/(2x^2)+1/2intdx/x^3

=-lnx/(2x^2)-1/(4x^2)+C

=-(2lnx+1)/(4x^2)+C