How do solve the following linear system?: 8x+2y=3 , 2x+7=-5y 8x+2y=3,2x+7=5y?

2 Answers
Jun 27, 2018

8x+2y = 38x+2y=3

2x+7=-5y2x+7=5y

* * * * * * * * * * * * * * * * * * *

Let's isolate for yy in the second equation:

(-2x-7)/5 = y2x75=y

Now plug that into the first equation for yy:

8x+(2(-2x-7))/5 = 38x+2(2x7)5=3

color(gray)(5/5) xx 8x - (4x)/5 - 14/5 = 355×8x4x5145=3

common denominator

( 40x - 4x -14 )/5 = 3 40x4x145=3

multiply both sides by 55

36x =2936x=29

color(green)(x = 29/36 = 0.806x=2936=0.806

color(white)(..)..

Now let's solve for yy:

8(29/36) + 2y = 3 xx color(gray)(36/36)8(2936)+2y=3×3636

232/36 + 2y = 108/3623236+2y=10836

2y = 108/36 - 232/362y=1083623236

2y = -124/362y=12436

y = -124/72 = -1.722y=12472=1.722

* * * * * * * * * * * * * * * * * * * * * * * *

Let's check our work by graphing the two equations and seeing where they intersect

Looks right! Good job

media.giphy.com

Jun 27, 2018

x=29/36, color(white)("xx")y=-31/18x=2936,xxy=3118

Explanation:

Given
[1]color(white)("XXX")8x+2y=3XXX8x+2y=3
[2]color(white)("XXX")2x+7=-5yXXX2x+7=5y

Converting [2] into standard form:
[3]color(white)("XXX")2x+5y=-7XXX2x+5y=7

We note that if we multiply [3] by 44 the coefficient of xx becomes the same as that of [1]
[4]color(white)("XXX")8x+20y=-28XXX8x+20y=28

Subtracting [1] from [4] (to get rid of the xx variable
[5]color(white)("XXX")18y=-31XXX18y=31

Dividing both sides of [5] by 1818
[6]color(white)("XXX")y=-31/18XXXy=3118

Substituting (-31/8)(318) for yy in [1]
[7]color(white)("XXX")8x+2 *(-31/18)=3XXX8x+2(3118)=3

[8]color(white)("XXX")8xcolor(white)("xxxxxxxxxxxx")=3+31/9=58/9XXX8xxxxxxxxxxxxx=3+319=589

[9]color(white)("XXX")x=29/36XXXx=2936

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Verifying by substituting (-31/18)(3118) for yy and 29/362936 for xx in [2]
[10]color(white)("XXX")2 * (29/36)+7 color(white)("xxx")?=?color(white)("xxx") -5 * (-31/18)XXX2(2936)+7xxx?=?xxx5(3118)

[11]color(white)("XXX")29/18+126/18color(white)("xxxxx")?=?color(white)("xx")155/18XXX2918+12618xxxxx?=?xx15518

Yes: results verified!