How do you apply the sum and difference formula to solve trigonometric equations?
1 Answer
Apr 7, 2015
Main Sum and Differences Trigonometric Identities
cos (a - b) = cos a*cos b + sin a*sin b
cos (a + b) = cos a*cos b - sin a*sin b
sin (a - b) = sin a*cos b - sin b*cos a
sin (a + b) = sin a*cos b + sin b*cos a
tan (a - b) = (tan a - tan b)/(1 + tan a*tan b)
tan (a + b) = (tan a + tan b)/(1 -tan a*tan b)
Application of Sum and Differences Trigonometric Identities
Example 1: Find
sin 2a
= sin (a + a)
= sin a*cos a + sin a*cos a
= 2*sin a*cos a
Example 2: Find
cos 2a
= cos (a + a)
= cos a*cos a - sin a*sin a
= cos^2 a - sin^2 a
Example 3: Find
cos ((13pi)/12)
= cos (pi/3 + (3pi)/4)
= cos (pi/3)*cos ((3pi)/4) - sin (pi/3)*sin ((3pi)/4)
= -(sqrt2)/4 - (sqrt6)/4
= -[sqrt2 + sqrt6]/4