How do you write cos75cos35+sin75sin 35cos75cos35+sin75sin35 as a single trigonometric function?

1 Answer
Feb 3, 2015

The answer is: cos40cos40.

It is easy if we remember the angle difference formula of cosine, that says:

cos(alpha-beta)=cosalphacosbeta+sinalphasinbetacos(αβ)=cosαcosβ+sinαsinβ.

In this case alpha=75α=75 and beta=35β=35, and we can use the formula conversely:

cos75cos35+sin75sin35=cos(75-35)=cos40cos75cos35+sin75sin35=cos(7535)=cos40.