How do you balance this chemical equation: #"Mg"_3"B"_2 + "H"_2"O" -> "Mg"("OH")_2 + "B"_2"H"_6#?
1 Answer
I got:
#"Mg"_3"B"_2 + color(red)(6)"H"_2"O" -> color(red)(3)"Mg"("OH")_2 + "B"_2"H"_6#
We start with:
#"Mg"_3"B"_2 + "H"_2"O" -> "Mg"("OH")_2 + "B"_2"H"_6#
and first see which atoms are unbalanced.
#stackrel("Reactants Side")overbrace([3xx"Mg"])# vs.#stackrel("Products Side")overbrace([1xx"Mg"])# --- unbalanced#stackrel("Reactants Side")overbrace([2xx"B"])# vs.#stackrel("Products Side")overbrace([2xx"B"])# --- balanced#stackrel("Reactants Side")overbrace([2xx"H"])# vs.#stackrel("Products Side")overbrace([2xx"H" + 6xx"H"])# --- unbalanced#stackrel("Reactants Side")overbrace([1xx"O"])# vs.#stackrel("Products Side")overbrace([2xx"O"])# --- unbalanced
So, I would add whole-number coefficients to balance either the magnesium, oxygen, or hydrogen, but not the boron.
Since the boron is already balanced, I would ignore the
#"Mg"_3"B"_2 + "H"_2"O" -> color(red)(3)"Mg"("OH")_2 + "B"_2"H"_6# Now the magnesium are balanced.
There are
#color(blue)("Mg"_3"B"_2 + color(red)(6)"H"_2"O" -> color(red)(3)"Mg"("OH")_2 + "B"_2"H"_6)# Now we have:
#2xx6 = color(red)(12)# hydrogen atoms on the reactants side, and#3xx2 + 6 = color(red)(12)# hydrogen atoms on the products side, which is balanced.#color(red)(6)# oxygen atoms on the reactants side, and#3xx2 = color(red)(6)# oxygen atoms on the products side, which is balanced.
Since we have balanced the magnesium, oxygen, and hydrogen atoms without touching the boron atoms (which were already balanced), this is balanced.
#stackrel("Reactants Side")overbrace([3xx"Mg"])# vs.#stackrel("Products Side")overbrace([3xx"Mg"])# --- balanced#stackrel("Reactants Side")overbrace([2xx"B"])# vs.#stackrel("Products Side")overbrace([2xx"B"])# --- balanced#stackrel("Reactants Side")overbrace([6xx2xx"H"])# vs.#stackrel("Products Side")overbrace([3xx2xx"H" + 6xx"H"])# --- balanced#stackrel("Reactants Side")overbrace([6xx"O"])# vs.#stackrel("Products Side")overbrace([3xx2xx"O"])# --- balanced