How do you calculate log_(1/625) 125log1625125?

1 Answer
Apr 22, 2016

log_(1/625)(125)= -3/4log1625(125)=34

Explanation:

We will use the following:

  • y = log_a(x) <=> a^y = xy=loga(x)ay=x (for x>0x>0)
  • log_a(a^x) = xloga(ax)=x
  • (a^b)^c = a^(bc)(ab)c=abc
  • a^(-b) = 1/a^bab=1ab

Let x = log_(1/625)(125)x=log1625(125)

=> (1/625)^x = 125(1625)x=125

=> (5^(-4))^x = 5^3(54)x=53

=> 5^(-4x) = 5^354x=53

=> log_5(5^(-4x)) = log_5(5^3)log5(54x)=log5(53)

=> -4x = 34x=3

:. x = -3/4