How do you calculate log_5(4) log5(4)?

1 Answer
Apr 8, 2016

log_5(4)=0.8614log5(4)=0.8614

Explanation:

Let log_ba=xlogba=x, then b^x=abx=a.

If a=10^na=10n and b=10^mb=10m, then n=logan=loga and m=logbm=logb and

b^x=abx=a becomes (10^m)^x=10^n(10m)x=10n or 10^(mx)=10^n10mx=10n i.e.

mx=nmx=n

Hence x=n/m=loga/logbx=nm=logalogb

Thus log_5(4)=log4/log5=0.6021/0.6990=0.8614log5(4)=log4log5=0.60210.6990=0.8614