How do you classify the conic 3x^2+y^2+2x+2y=0?

1 Answer
Jan 20, 2017

3x^2+y^2+2x+2y=0 is an ellipse.

Explanation:

Let the equation be of the type Ax^2+Bxy+Cy^2+Dx+Ey+F=0

then if

B^2-4AC=0 and A=0 or C=0, it is a parabola

B^2-4AC<0 and A=C, it is a circle

B^2-4AC<0 and A!=C, it is an ellipse

B^2-4AC>0, it is a hyperbola

In the given equation 3x^2+y^2+2x+2y=0

A=3, B=0 and C=1

Therefore, B^2-4AC=0^2-4xx3xx1=-12<0 and A!=C

Hence, 3x^2+y^2+2x+2y=0 is an ellipse.
graph{3x^2+y^2+2x+2y=0 [-2.55, 2.45, -2.2, 0.3]}