How do you classify the conic x^2+6x-2y+13=0?

1 Answer
Oct 2, 2016

x^2+6x-2y+13=0 is a parabola.

Explanation:

Let the equation be of the type Ax^2+Bxy+Cy^2+Dx+Ey+F=0

then if

B^2-4AC=0 and A=0 or C=0, it is a parabola

B^2-4AC<0 and A=C, it is a circle

B^2-4AC<0 and A!=C, it is an ellipse

B^2-4AC>0, it is a hyperbola

In the given equation x^2+6x-2y+13=0

A=1, B=0 and C=0

Therefore, B^2-4AC=0^2-4xx1xx0=-0 and C=0 but A!=0

Hence, x^2+6x-2y+13=0 is a parabola.
graph{x^2+6x-2y+13=0 [-13.79, 6.21, -0.92, 9.08]}