How do you combine #(x^2)/(x+3) - 9/(x+3)#?

1 Answer
Mar 14, 2018

#x-3#

Explanation:

#"since the fractions have a "color(blue)"common denominator"#
#"we can subtract the numerators leaving the denominator"#

#rArrx^2/(x+3)-9/(x+3)#

#=(x^2-9)/(x+3)larrcolor(blue)"combined"#

#"this may be simplified further"#

#x^2-9" is a "color(blue)"difference of squares"#

#•color(white)(x)a^2-b^2=(a-b)(a+b)#

#rArrx^2-9=(x-3)(x+3)#

#rArr(x^2-9)/(x+3)#

#=((x-3)cancel((x+3)))/cancel((x+3))=x-3#