How do you compute the value of #int t^2+3tdt# of [1,4]?

1 Answer
Nov 29, 2016

I found: #87/2#

Explanation:

We first inegrate and then apply the limits:
#int(t^2+3t)dt=# separate:
#=intt^2dt+int3tdt=# use standard integration rules:
#=t^3/3+3t^2/2#
let us now use the estremes evaluating our function at #t=4# and #t=1#:

For #t=4#
#4^3/3+3*4^2/2=64/3+24=136/3#
For #t=1#
#1^3/3+3*1^2/2=(2+9)/6=11/6#

Now we need to subtract the values obtained:

#136/3-11/6=(272-11)/6=261/6=87/2#

So:#int_1^4(t^2+3t)dt=87/2#