How do you compute the value of int t^2+3tdt of [1,4]?

1 Answer
Nov 29, 2016

I found: 87/2

Explanation:

We first inegrate and then apply the limits:
int(t^2+3t)dt= separate:
=intt^2dt+int3tdt= use standard integration rules:
=t^3/3+3t^2/2
let us now use the estremes evaluating our function at t=4 and t=1:

For t=4
4^3/3+3*4^2/2=64/3+24=136/3
For t=1
1^3/3+3*1^2/2=(2+9)/6=11/6

Now we need to subtract the values obtained:

136/3-11/6=(272-11)/6=261/6=87/2

So:int_1^4(t^2+3t)dt=87/2