How do you condense (1/3) (2log_B M - log _B N - log_B P)?

1 Answer

It is

(1/3) (2log_B M - log _B N - log_B P)= (1/3)*(logM^2/logB+logN^-1/logB+logP^-1/logB)= (1/3)((logM^2+logN^-1+logP^-1)/logB)= (1/3)(log(M^2/(N*P))/logB)= (log(root 3 (M^2/(N*P)))/logB)