How do you condense 1/3(log_8y+2log_8(y+4))-log_8(y-1)13(log8y+2log8(y+4))log8(y1)?

1 Answer
Jan 25, 2017

log_8(root(3)(y(y+4)^2)/(y-1))log8⎜ ⎜3y(y+4)2y1⎟ ⎟

Explanation:

Since kloga=loga^kkloga=logak, the expression is equivalent to:

1/3(log_8y+log_8(y+4)^2)-log_8(y-1)13(log8y+log8(y+4)2)log8(y1)

Since loga+logb=log(ab)loga+logb=log(ab), you get:

1/3log_8y(y+4)^2-log_8(y-1)13log8y(y+4)2log8(y1)

=log_8(y(y+4)^2)^(1/3)-log_8(y-1)=log8(y(y+4)2)13log8(y1)

Since loga-logb=log(a/b)logalogb=log(ab), you get

log_8((y(y+4)^2)^(1/3)/(y-1))log8⎜ ⎜ ⎜(y(y+4)2)13y1⎟ ⎟ ⎟

that can be written as:

log_8(root(3)(y(y+4)^2)/(y-1))log8⎜ ⎜3y(y+4)2y1⎟ ⎟