How do you condense 2log(x-3)+log(x+2)-6logx?

1 Answer
Mar 22, 2016

2log(x-3)+log(x+2)-6logx=log(((x-3)^2 (x+2))/x^6)

Explanation:

2log(x-3)+log(x+2)-6logx
=log(x-3)^2+log(x+2)-logx^6-> use property log_bx^n=nlog_bx
=log(((x-3)^2 (x+2))/x^6)->use properties log_b(xy)=log_bx+log_by, and log_b(x/y) = log_b x-log_b y