How do you condense 3log_3x+4log_3y-4log_3z?
1 Answer
Dec 29, 2016
Explanation:
Using the
color(blue)"laws of logarithms"
color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(logx^nhArrnlogx)color(white)(2/2)|)))
rArr3log_3x+4log_3y-4log_3z
=log_3x^3+log_3y^4-log_3z^4
color(red)(bar(ul(|color(white)(2/2)color(black)(logx+logy=log(xy), logx-logy=log(x/y))color(white)(2/2)|)))
rArrlog_3x^3+log_3y^4=log_3(x^3y^4)
rArrlog_3(x^3y^4)-log_3z^4=log_3((x^3y^4)/(z^4))