How do you condense log_(6)(x+4)+1/2log_(6)xlog6(x+4)+12log6x?

1 Answer
Aug 4, 2016

log_6((x+4)sqrtx)log6((x+4)x)

Explanation:

Since n log_b a=log_b a^nnlogba=logban, you have

1/2log_6 x=log_6 x^(1/2)=log_6sqrt(x)12log6x=log6x12=log6x

Since log_b a+log_b c=log_b (ac)logba+logbc=logb(ac), you have

log_6(x+4)+log_6sqrtx=log_6((x+4)sqrtx)log6(x+4)+log6x=log6((x+4)x)