How do you condense this expression into a single logarithm? log_(5)x/2+log_(5)y/2+log_(5)z/2log5x2+log5y2+log5z2

1 Answer
Dec 3, 2016

The Answer is log_5sqrt(xyz)log5xyz.

Explanation:

(log_5x)/2+(log_5y)/2+(log_5z)/2log5x2+log5y2+log5z2.

=1/2[log_5x+log_5y+log_5z]=12[log5x+log5y+log5z].

=1/2[log_5(x)xx(y)xx(z)]=12[log5(x)×(y)×(z)].

=1/2log_5xyz=12log5xyz.

=log_5(xyz)^(1/2)=log5(xyz)12.

=log_5sqrt(xyz)=log5xyz. (Answer).