How do you derive y=tanx using the definition of the derivative?

1 Answer
Sep 6, 2015

Use the tangent of a sum, continuity of tangent and lim_(hrarr0)tan h/h = 1

Explanation:

f(x) = tanx

f'(x) = lim_(hrarr0)(tan(x+h) - tanx)/h

= lim_(hrarr0)((tanx+tan h)/(1-tanxtan h) - tanx)/h

= lim_(hrarr0)(tanx+tan h- tanx+tan^2xtan h)/(h(1-tanxtan h))

= lim_(hrarr0)(tan h/h * (1+tan^2x)/(1-tanxtan h))

= (1) * (1+tan^2x)/(1-0) = 1+tan^2x = sec^2x