How do you determine if a_n=(1+n)^(1/n)an=(1+n)1n converge and find the limits when they exist?

1 Answer
Nov 8, 2017

The series converge to =1=1

Explanation:

Let y=(1+n)^(1/n)y=(1+n)1n

Taking logarithms

lny=ln((1+n)^(1/n))=1/nln(1+n)lny=ln((1+n)1n)=1nln(1+n)

Therefore,

y=e^(1/nln(1+n))y=e1nln(1+n)

So,

lim_(n->oo)u_n=lim_(n->oo)e^(1/nln(1+n))

Apply the limit chain rule

lim_(n->oo)(1/nln(1+n))=lim_(n->oo)(1/(1+n)) ( by L'Hôpital's rule)

=0

Therefore,

lim_(n->oo)e^(1/nln(1+n))=lim_(n->oo)e^0=1