How do you differentiate 2cos^2(x)2cos2(x)?

1 Answer
Jan 19, 2017

(dy)/(dx) =-4cosxsinxdydx=4cosxsinx

Explanation:

To differentiate y=2cos^2xy=2cos2x we need the chain rule

(dy)/(dx)=(dy)/(du)xx(du)/(dx)dydx=dydu×dudx

let u=cosx=>y=2u^2u=cosxy=2u2

(du)/(dx)=-sinxdudx=sinx

(dy)/(du)=4udydu=4u

:.(dy)/(dx)=4uxx(-sinx)

substitute back for u

(dy)/(dx) =-4cosxsinx