How do you differentiate 5^(2x^2)52x2?

2 Answers
Oct 30, 2017

d/dx (5^(2x^2)) = 4ln5 x 5^(2x^2)ddx(52x2)=4ln5x52x2

Explanation:

Consider that:

5^(2x^2) = (e^ln5)^(2x^2) = e^(2ln5x^2)52x2=(eln5)2x2=e2ln5x2

So, using the chain rule:

d/dx (5^(2x^2)) = d/dx(e^(2ln5x^2)) = e^(2ln5x^2) d/dx (2ln5x^2)ddx(52x2)=ddx(e2ln5x2)=e2ln5x2ddx(2ln5x2)

d/dx (5^(2x^2)) = d/dx(e^(2ln5x^2)) = 4ln5xe^(2ln5x^2) = 4ln5 x 5^(2x^2)ddx(52x2)=ddx(e2ln5x2)=4ln5xe2ln5x2=4ln5x52x2

Oct 31, 2017

(dy)/(dx)=5^(2x^2)4xln5dydx=52x24xln5

Explanation:

y=5^(2x^2)y=52x2

take natural logs of both sides

lny=ln5^(2x^2)lny=ln52x2

using laws of logs

lny=2x^2ln5lny=2x2ln5

differentiate implicitly

1/y(dy)/(dx)=4xln51ydydx=4xln5

(dy)/(dx)=y4xln5dydx=y4xln5

:.(dy)/(dx)=5^(2x^2)4xln5