How do you differentiate cos(1-2x)^2?

1 Answer
May 8, 2018

dy/dx=4cos(1-2x)sin(1-2x)

Explanation:

First, let cos(1-2x)=u

So, y=u^2

dy/dx=(dy)/(du)*(du)/(dx)

(dy)/(du)=2u

(du)/(dx)=d/dx[cos(1-2x)]=d/dx[cos(v)]

(du)/(dx)=(du)/(dv)*(dv)/(dx)

dy/dx=(dy)/(du)* (du)/(dv) *(dv)/(dx)

(du)/(dv)=-sin(v)
(dv)/(dx)=-2

dy/dx=2u*-sin(v)*-2

dy/dx=4usin(v)

dy/dx=4cos(1-2x)sin(1-2x)