How do you differentiate cos(x^4)?

1 Answer
Sep 5, 2016

- 4 x^(7)

Explanation:

We have: cos(x^(4))

This expression can be differentiated using the "chain rule".

Let u = x^(4) => u' = 4 x^(3) and v = cos(u) => v' = - sin(u):

=> (d) / (dx) (cos(x^(4))) = 4 x^(3) cdot - sin(u)

=> (d) / (dx) (cos(x^(4))) = - 4 u x^(3)

We can now replace u with x^(4):

=> (d) / (dx) (cos(x^(4))) = - 4 (x^(4)) x^(3)

=> (d) / (dx) (cos(x^(4))) = - 4 x^(4 + 3)

=> (d) / (dx) (cos(x^(4))) = - 4 x^(7)