How do you differentiate cos(x^4)-2sinx?

1 Answer
Feb 23, 2017

-4x^3sin(x^4)-2cosx

Explanation:

Using color(blue)"standard derivatives"

color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(d/dx(sinx)=cosx,d/dx(cosx)=-sinx)color(white)(2/2)|)))

differentiate the first term using the color(blue)"chain rule"

• d/dx[cos(f(x))]=-sin(f(x))xxf'(x)

rArrd/dx[cos(x^4)-2sinx]

=-sin(x^4)xxd/dx(x^4)-2cosx

=-4x^3sin(x^4)-2cosx