How do you differentiate cos(x^4)-2sinx?
1 Answer
Feb 23, 2017
Explanation:
Using
color(blue)"standard derivatives"
color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(d/dx(sinx)=cosx,d/dx(cosx)=-sinx)color(white)(2/2)|))) differentiate the first term using the
color(blue)"chain rule"
• d/dx[cos(f(x))]=-sin(f(x))xxf'(x)
rArrd/dx[cos(x^4)-2sinx]
=-sin(x^4)xxd/dx(x^4)-2cosx
=-4x^3sin(x^4)-2cosx