How do you differentiate (e^ (2x) - e^(-2x) ) ^ 2?

1 Answer
Dec 9, 2016

4(e^{4x}-e^{-4x})

Explanation:

First, differentiate "something" squared as 2xx something. Then multiply by whatever you get by differentiating the something:
2(e^{2x}-e^{-2z})^1xx d/{dx}(e^{2x}-e^{-2x}) =2(e^{2x}-e^{-2z})xx(2e^{2x}+2e^{-2x}) (because d/dx(e^{ax})=ae^{ax})
=4(e^{2x}-e^{-2x})(e^{2x}+e^{-2x}).
Remember (a-b)(a+b)=(a^2-b^2) and e^{2x}xxe^{2x}=e^{4x}