Here,
e^ycosx=6+sin(xy)eycosx=6+sin(xy)
Diff.w.r.t. xx,"using "color(blue)"product and chain rule"using product and chain rule
e^yd/(dx)(cosx)+cosxd/(dx)(e^y)=0+cos(xy)d/(dx)(xy)eyddx(cosx)+cosxddx(ey)=0+cos(xy)ddx(xy)
e^y(-sinx)+cosx(e^y(dy)/(dx))=cos(xy)[x(dy)/(dx)+y*1]ey(−sinx)+cosx(eydydx)=cos(xy)[xdydx+y⋅1]
-e^ysinx+e^ycosx(dy)/(dx)=xcos(xy)(dy)/(dx)+ycos(xy)−eysinx+eycosxdydx=xcos(xy)dydx+ycos(xy)
e^ycosx(dy)/(dx)-xcos(xy)(dy)/(dx)=e^ysinx+ycos(xy)eycosxdydx−xcos(xy)dydx=eysinx+ycos(xy)
(dy)/(dx)[e^ycosx-xcos(xy)]=e^ysinx+ycos(xy)dydx[eycosx−xcos(xy)]=eysinx+ycos(xy)
(dy)/(dx)=(e^ysinx+ycos(xy))/(e^ycosx-xcos(xy)]dydx=eysinx+ycos(xy)eycosx−xcos(xy)