How do you differentiate e^y cos(x) = 6 + sin(xy)eycos(x)=6+sin(xy)?

1 Answer
Apr 17, 2018

(dy)/(dx)=(e^ysinx+ycos(xy))/(e^ycosx-xcos(xy)]dydx=eysinx+ycos(xy)eycosxxcos(xy)

Explanation:

Here,

e^ycosx=6+sin(xy)eycosx=6+sin(xy)

Diff.w.r.t. xx,"using "color(blue)"product and chain rule"using product and chain rule

e^yd/(dx)(cosx)+cosxd/(dx)(e^y)=0+cos(xy)d/(dx)(xy)eyddx(cosx)+cosxddx(ey)=0+cos(xy)ddx(xy)

e^y(-sinx)+cosx(e^y(dy)/(dx))=cos(xy)[x(dy)/(dx)+y*1]ey(sinx)+cosx(eydydx)=cos(xy)[xdydx+y1]

-e^ysinx+e^ycosx(dy)/(dx)=xcos(xy)(dy)/(dx)+ycos(xy)eysinx+eycosxdydx=xcos(xy)dydx+ycos(xy)

e^ycosx(dy)/(dx)-xcos(xy)(dy)/(dx)=e^ysinx+ycos(xy)eycosxdydxxcos(xy)dydx=eysinx+ycos(xy)

(dy)/(dx)[e^ycosx-xcos(xy)]=e^ysinx+ycos(xy)dydx[eycosxxcos(xy)]=eysinx+ycos(xy)

(dy)/(dx)=(e^ysinx+ycos(xy))/(e^ycosx-xcos(xy)]dydx=eysinx+ycos(xy)eycosxxcos(xy)