How do you differentiate F(t)=ln[(2t+1)^3/(3t-1)^4]F(t)=ln[(2t+1)3(3t1)4]?

1 Answer
Aug 8, 2016

=- (6(t+ 3))/((2t+1)(3t-1))=6(t+3)(2t+1)(3t1)

Explanation:

F(t)=ln[(2t+1)^3/(3t-1)^4]F(t)=ln[(2t+1)3(3t1)4]

break it up to make it easier....
=ln(2t+1)^3 - ln (3t-1)^4=ln(2t+1)3ln(3t1)4

=3ln(2t+1) - 4ln (3t-1)=3ln(2t+1)4ln(3t1)

d/dt (3ln(2t+1) - 4ln (3t-1))ddt(3ln(2t+1)4ln(3t1))

=6/(2t+1) - 12/(3t-1)=62t+1123t1

=(18t - 6 - 24t -12)/((2t+1)(3t-1))=18t624t12(2t+1)(3t1)

=(-6t - 18)/((2t+1)(3t-1))=6t18(2t+1)(3t1)

=- (6(t+ 3))/((2t+1)(3t-1))=6(t+3)(2t+1)(3t1)