Here we can use quotient rule.
Also note that derivative of arctanx, which is also known as tan^(-1)x is 1/(1+x^2) i.e.
d/(dx)arctanx=1/(1+x^2)
Now according to quotient rule if f(x)=(g(x))/(h(x))
then (df(x))/(dx)=(h(x)*(dg(x))/(dx)-g(x)*(dh(x))/(dx))/((h(x))^2)
Here g(x)=1+arctanx hence (dg(x))/(dx)=1/(1+x^2)
and h(x)=2-3arctanx hence (dh(x))/(dx)=-3/(1+x^2)
Hence
(df(x))/(dx)=((2-3arctanx)*1/(1+x^2)-(1+arctanx)(-3/(1+x^2)))/((2-3arctanx)^2)
= ((2/(1+x^2)-(3arctanx)/(1+x^2)+3/(1+x^2)+(3arctanx)/(1+x^2)))/((2-3arctanx)^2)
= (5/(1+x^2))/((2-3arctanx)^2)
= 5/((1+x^2)(2-3arctanx)^2)