How do you differentiate f(x)=(1+arctanx)/(2-3arctanx)?

1 Answer
Mar 24, 2017

(df(x))/(dx)=5/((1+x^2)(2-3arctanx)^2)

Explanation:

Here we can use quotient rule.

Also note that derivative of arctanx, which is also known as tan^(-1)x is 1/(1+x^2) i.e.

d/(dx)arctanx=1/(1+x^2)

Now according to quotient rule if f(x)=(g(x))/(h(x))

then (df(x))/(dx)=(h(x)*(dg(x))/(dx)-g(x)*(dh(x))/(dx))/((h(x))^2)

Here g(x)=1+arctanx hence (dg(x))/(dx)=1/(1+x^2)

and h(x)=2-3arctanx hence (dh(x))/(dx)=-3/(1+x^2)

Hence

(df(x))/(dx)=((2-3arctanx)*1/(1+x^2)-(1+arctanx)(-3/(1+x^2)))/((2-3arctanx)^2)

= ((2/(1+x^2)-(3arctanx)/(1+x^2)+3/(1+x^2)+(3arctanx)/(1+x^2)))/((2-3arctanx)^2)

= (5/(1+x^2))/((2-3arctanx)^2)

= 5/((1+x^2)(2-3arctanx)^2)