How do you differentiate f(x)=(1+cos^2x)^6?
1 Answer
Apr 7, 2017
Explanation:
differentiate using the
color(blue)"chain rule"
"Given " f(x)=g(h(x))" then"
color(red)(bar(ul(|color(white)(2/2)color(black)(f'(x)=g'(h(x))xxh'(x))color(white)(2/2)|)))
rArrf'(x)=6(1+cos^2x)^5xxd/dx(1+cos^2x)to(1)
"Using the " color(blue)"chain rule " "on " (1+cos^2x)
d/dx(1+cos^2x)=2cosxxd/dx(cosx)
color(white)(d/dx(1+cos^2x))=-2cosxsinxlarr( -sin2x)
"Returning to " (1)
f'(x)=-6sin2x(1+cos^2x)^5