How do you differentiate f(x)=1/ln(x^2-x^3+x^4)f(x)=1ln(x2x3+x4)?

1 Answer
Dec 5, 2015

f'(x)=-(4x^2-3x+2)/((x^3-x^2+x)ln^2(x^4-x^3+x^2))

Explanation:

Rewrite f(x)=(ln(x^2-x^3+x^4))^(-1).

Use the chain rule to differentiate from here:

f'(x)=-(ln(x^2-x^3+x^4))^(-2)d/dx[ln(x^2-x^3+x^4)]

Find just d/dx[ln(x^2-x^3+x^4)].

Using the chain rule, remembering that d/dx[ln(x)]=1/x, recall that d/dx[ln(u)]=(u')/u.

d/dx[ln(x^2-x^3+x^4)]=(d/dx[x^2-x^3+x^4])/(x^2-x^3+x^4)=(2x-3x^2+4x^3)/(x^2-x^3+x^4)

Plug back in.

f'(x)=-(ln(x^2-x^3+x^4))^(-2)((2x-3x^2+4x^3)/(x^2-x^3+x^4))

f'(x)=-1/(ln^2(x^2-x^3+x^4))((2x-3x^2+4x^3)/(x^2-x^3+x^4))

f'(x)=-(x(4x^2-3x+2))/(x(x^3-x^2+x)ln^2(x^4-x^3+x^2))

f'(x)=-(4x^2-3x+2)/((x^3-x^2+x)ln^2(x^4-x^3+x^2))