Rewrite f(x)=(ln(x^2-x^3+x^4))^(-1).
Use the chain rule to differentiate from here:
f'(x)=-(ln(x^2-x^3+x^4))^(-2)d/dx[ln(x^2-x^3+x^4)]
Find just d/dx[ln(x^2-x^3+x^4)].
Using the chain rule, remembering that d/dx[ln(x)]=1/x, recall that d/dx[ln(u)]=(u')/u.
d/dx[ln(x^2-x^3+x^4)]=(d/dx[x^2-x^3+x^4])/(x^2-x^3+x^4)=(2x-3x^2+4x^3)/(x^2-x^3+x^4)
Plug back in.
f'(x)=-(ln(x^2-x^3+x^4))^(-2)((2x-3x^2+4x^3)/(x^2-x^3+x^4))
f'(x)=-1/(ln^2(x^2-x^3+x^4))((2x-3x^2+4x^3)/(x^2-x^3+x^4))
f'(x)=-(x(4x^2-3x+2))/(x(x^3-x^2+x)ln^2(x^4-x^3+x^2))
f'(x)=-(4x^2-3x+2)/((x^3-x^2+x)ln^2(x^4-x^3+x^2))