How do you differentiate f(x) = (2x-3) ^ -2?

1 Answer
Apr 24, 2016

(-4)/(2x-3)^3

Explanation:

differentiate using the color(blue)" chain rule "

d/dx [f(g(x)) ] = f'(g(x)) . g'(x)
"----------------------------------------------"

f(g(x)) =(2x-3)^(-2) rArr f'(g(x)) = -2(2x-3)^(-3)

and g(x) = 2x - 3 → g'(x) = 2
"----------------------------------------------"
Substitute these values into the derivative

rArr f'(x) = -2(2x-3)^(-3)xx2 = (-4)/(2x-3)^3