How do you differentiate f(x) = (2x-3) ^ -2?
1 Answer
Apr 24, 2016
Explanation:
differentiate using the
color(blue)" chain rule "
d/dx [f(g(x)) ] = f'(g(x)) . g'(x)
"----------------------------------------------" f(g(x))
=(2x-3)^(-2) rArr f'(g(x)) = -2(2x-3)^(-3) and g(x) = 2x - 3 → g'(x) = 2
"----------------------------------------------"
Substitute these values into the derivative
rArr f'(x) = -2(2x-3)^(-3)xx2 = (-4)/(2x-3)^3