f'(x)=frac{d}{dx}(e^{−x}sin(x)−e^xcos(x))
=frac{d}{dx}(e^{−x}sin(x))−frac{d}{dx}(e^xcos(x))
=[e^{−x}frac{d}{dx}(sin(x))+sin(x)frac{d}{dx}(e^{−x})]
−[e^xfrac{d}{dx}(cos(x))+cos(x)frac{d}{dx}(e^x)]
=[e^{−x}(cos(x))+sin(x)(-e^{−x})]
−[e^x(-sin(x))+cos(x)(e^x)]
=e^{−x}(cos(x)-sin(x))-e^x(cos(x)-sin(x))
=(e^{−x}-e^{x})(cos(x)-sin(x))