How do you differentiate f(x) = e^-x sinx-e^xcosx?

1 Answer
Nov 11, 2015

f'(x)=(e^{x}-e^{-x})(sin(x)-cos(x))

Explanation:

f'(x)=frac{d}{dx}(e^{−x}sin(x)−e^xcos(x))

=frac{d}{dx}(e^{−x}sin(x))−frac{d}{dx}(e^xcos(x))

=[e^{−x}frac{d}{dx}(sin(x))+sin(x)frac{d}{dx}(e^{−x})]

−[e^xfrac{d}{dx}(cos(x))+cos(x)frac{d}{dx}(e^x)]

=[e^{−x}(cos(x))+sin(x)(-e^{−x})]

−[e^x(-sin(x))+cos(x)(e^x)]

=e^{−x}(cos(x)-sin(x))-e^x(cos(x)-sin(x))

=(e^{−x}-e^{x})(cos(x)-sin(x))