How do you differentiate f(x)= ln(1-x)^4?

1 Answer
Dec 27, 2016

(dy)/(dx)=(-4(1-x)^3)/((1-x)^4)

Explanation:

f(x)=ln(1-x)^4

Using the chain rule.

(dy)/(dx)=(dy)/(du)xx(du)/(dx)

let" "u=(1-x)^4=>(du)/(dx)=-4(1-x)^3

y=lnu=>(du)/(dx)=1/u

(dy)/(dx)=(dy)/(du)xx(du)/(dx)

(dy)/(dx)=1/uxx-4(1-x)^3

(dy)/(dx)=(-4(1-x)^3)/((1-x)^4)