How do you differentiate f(x)=ln (x^3+3)f(x)=ln(x3+3)?

1 Answer
Oct 31, 2016

f'(x) = (3x^2)/(x^3+3)

Explanation:

f(x) = ln(x^3+3)

To differentiate we use the chain rule:
d/dxf(g(x)) =f'(g(x))g'(x) or, dy/dx=dy/(du)(du)/dx

:. f'(x) = 1/(x^3+3) d/dx(x^3+3)

:. f'(x) = 1/(x^3+3)(3x^2)

:. f'(x) = (3x^2)/(x^3+3)