How do you differentiate f(x) = sin^2 x + 1/2 cot x-tanx?

1 Answer
Jun 1, 2018

f'(x)=sin(2x)-1/(2sin^2(x))-1/cos^2(x)

Explanation:

Writing
f(x)=sin^2(x)+1/2*cos(x)/sin(x)-sin(x)/cos(x)

f'(x)=2sin(x)cos(x)+1/2*(-sin^2(x)-cos^2(x))/sin^2(x)-(sin^2(x)+cos^2(x))/cos^2(x)

so

f'(x)=sin(2x)-1/(2*sin^2(x))-1/cos^2(x)