How do you differentiate f(x)=sin(x^3)f(x)=sin(x3)?

2 Answers
Apr 19, 2018

Read below.

Explanation:

We use the chain rule:

d/dx[f(g(x))]=f'(g(x))*g'(x)

Power rule:

d/dx[x^n]=nx^(n-1)

d/dx[sinx]=cosx

Therefore:

f'(x)=cos(x^3)*d/dx[x^3]

=>f'(x)=cos(x^3)*3x^(3-1)

=>f'(x)=3x^2cos(x^3)

Apr 19, 2018

3x^2cos(x^3)

Explanation:

"differentiate using the "color(blue)"chain rule"

"Given "f(x)=g(h(x))" then"

f'(x)=g'(h(x))xxg'(x)larrcolor(blue)"chain rule"

f(x)=sin(x^3)

rArrf'(x)=cos(x^3)xxd/dx(x^3)=3x^2cos(x^3)